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This project is intended as a portfolio of simple applications of linear models under a few 

different scenarios, with data chosen by me. A linear model is always of the form 𝐲 = 𝐱𝛃 + 𝛜. 

Each application is a special case of this form of model. The five sections of this report include 

the following analyses: 

• SRS Mean 

• Two Means 

• One Factor Experiment 

• Two-Factor Experiment 

• One-Factor Analysis of Covariance 

For each of the above, this project provides an application description, data details, and an 

analysis in R. Each step is includes a brief explanation of methods and results, and why each is 

an example of 𝐲 = 𝐱𝛃 + 𝛜. 

SRS Mean 

A simple random sample (SRS) is a set of random draws from a popuulation of interest. The 

population has a true mean and true variance. Using the random sample, the mean can be 

estimated, along with a 95% confidence interval for the true mean using a 𝑡-test. 

Application Description 
The first data analysis will be of fire damage data in my hometown. I am from Washington 

County, Oregon (just outside of Portland). In the last few years, fires have been a big concern in 

the Pacific Northwest. The wildfires in Oregon and California have become infamous. Last year a 

wildfire in Oregon disrupted my family’s planned white-water rafting trip. 

According to oregon live, “the cost of fighting wildfires in Oregon reached an all-time high [of] 

514.6 million in 2018.” Statesman Journal reports over 1,800 fires, totaling 846,000 acres during 

that time. One fire in Klondike affected over 160,000 acres. I am curious as to what the true 

mean damage (as defined by total acres affected) by fires is in my hometown, along with other 

inference on that sample. 

Data Details 
From the Oregon Department of Forestry’s (ODF’s) website, odf.oregon.gov, I obtained a list of 

all fires in Washington County reported to the ODF since 1960. This data includes a column 

https://www.oregonlive.com/wildfires/2018/10/oregon_wildfire_costs_hit_reco.html
https://www.statesmanjournal.com/story/news/2018/10/10/oregon-wildfire-costs-hit-record-high-2018/1581132002/
https://apps.odf.oregon.gov/DIVISIONS/protection/fire_protection/fires/FIRESlist.asp


called “Total Acres” that reports how many acres were affected by each fire. A few adjustments 

were required for the data before analysis, due to two issues. 

First, 67 of the 770 reported fires either have a reported 0 acres of damage or a blank value. For 

my analysis, I do not want to look at the reported fires with no damage, because most fires with 

no damage probably go unreported anyway. Thus, all of these observations are removed. 

The other adjustment that was required was a log transformation on the acres damaged in each 

fire. This is because a 𝑡-test on this SRS requires the assumption of normality in the samples. The 

actual data clearly does not follow this assumption, and a log transformation helps. These two 

adjustments are labeled in the comments throughout the code. 

These observations are reported by the Oregon Department of Forestry. Their website does not 

provide many details on the data collection, but I assume that every reported fire is included in 

the data. The following is a boxplot of the data (acres of fire damage). 

 

This boxplot is heavily right-skewed. This may be because non-positive values are not included 

in this type of data and smaller fires are significantly more likely than bigger fires. This glance at 

the boxplot shows that the data are not normally distributed, which is an assumption of a SRS 

analysis. Quantile-quantile plots give a more detailed look into the normality of a dataset. The 

following is a quantile plot for the fire data. 



 

A look at the quantile plot confirms that the data is not normally distributed. Normally 

distributed data would approximately follow the line included in the quantile plot. A 

transformation on this data will be necessary for this analysis. Summary statistics of the 

untransformed data are included below. 

Summary Statistics of Acres 

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. 

0.01 0.05 0.1 1.65 0.62 211 10.86 

According to the summary statistics shown in the table, the maximum damage from a fire 

reported in Washington county is 211 acres, and the minimum is 0.01 acres. Half of the reported 

fires caused between 0.05 and 0.625 acres of damage. 

To address the heavy skew and non-normality of this data, a log transformation is peformed. 

The following shows the effects of this transformation on the assumption of normality (through 

a boxplot and a quantile plot). 



 

The log transformation helps the data fit the normality assumption much better. Although there 

appears to be some kind of discrete nature to these reports (which is impossible with normally 

distributed data), the log of the damage (in acreage) appears to be much closer to normally 

distributed, but less so in the tails. The transformation certainly helps reduce the skew from the 

original data. We will proceed with an analysis on these transformed data. 

Analysis 
Now that the data have been transformed, an analysis is performed on this SRS. First a 𝑡-test 

model is fit: 𝑌𝑖 = 𝜇 + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁(0, 𝜎2) Using this model, an estimate for the true mean (log-

transformed) acres of damage by a fire is calculated along with the 95% confidence interval for 

this true mean. 

Estimated Avg. Damage (Acres) 

Estimate Lower Upper 

0.1416 0.1227 0.1633 

The estimated true mean fire damage (in acres) for a fire in Washington County is 0.142 acres, 

with a 95 confidence interval of 0.123 to 0.163. This estimate is surprising to me. I expected the 

average damage to be a lot bigger, based on what I had heard. 

Example of a Linear Model 
This case is an example of 𝐘 = 𝐗𝛃 + 𝛜, with 



𝐘 = 𝐗𝛃 + 𝛜

[

ln𝑦1

ln𝑦2

⋮
ln𝑦𝑛

] = [

1
1
⋮
1

] [𝜇] + [

𝜖1

𝜖2

⋮
𝜖𝑛

] , 𝑤ℎ𝑒𝑟𝑒 𝜖𝑖 ∼ 𝑁(0, 𝜎2)
 

Although this example includes a log transformation, it is still an example of a linear model. The 

𝐗 matrix is simply a column of 1s. 𝛃 is a 1 × 1 matrix with the true mean 𝜇. The 𝐘 matrix is the 

recorded log(acres) of damage from the data, which has 𝑛 observations. The 𝛜 matrix is an 𝑛 × 1 

matrix of normally distributed error, centered on 0, with 𝜎2 variance. 

The main results of this SRS is that the true mean acres of damage in Washington County, 

Oregon, is roughly 0.14 acres. 

Two Means 

A two means analysis compares two groups and tests the hypothesis that the true means of the 

groups are significantly different from each other. This test assumes that the samples from these 

two groups are normally distributed and that the two groups have equal (or at least similar) 

variance. 

Application Description 
Wrestling has always been a fun sport for me to view and participate in. Unfortunately, college 

wrestling is not as popular as other college sports. Many universities (like BYU) do not have a 

team. When I watch, I like to follow a specific team, especially in tournaments. Simply watching 

hundreds of wrestlers across multiple teams is far less exciting than having a specific team to 

follow. Because BYU does not have a team, I typically follow Utah Valley University (UVU) or 

Oregon State University (OSU). 

Last year, I watched a few duels at UVU. It was frustrating to root for a losing team, especially 

one that I didn’t know too well. This year, I want to watch the Reno Tournament of Champions 

(TOC) on December 15. I want to follow the “better” team of UVU and OSU, based on last year’s 

performance at the same tournament. 

I will analyze the team points earned or lost for each match of UVU wrestlers from last year’s 

TOC, and compare that to the same for all of the OSU matches. By performing a two means 

analysis, I will be able to know which wrestlers’ matches would have been more “exciting” to 

follow at last year’s tournament between the two teams. This way, I may have a better idea of 

who to follow this year, if a “better” team exists. 

Data Details 
The data is from trackwrestling.com, selecting “Oregon State University” and “Utah Valley 

University” as the teams, and “Reno Tournament of Champions” from the event listing of both 

schools. The point system for wrestling matches are as follows: 

https://www.trackwrestling.com/tw/seasons/MainFrame.jsp?TIM=1571150804010&twSessionId=qaxpdwuvak&loadBalanced=true


• 6 points for a pin, forfeit, or disqualification 

• 5 points for a technical fall (15 point lead) 

• 4 points for a major decision (8-14 point lead) 

• 3 points for a decision (1-8 point lead) 

The scores reported in this data set include the total points won and given up in each match of 

all the wrestlers, summed up across the whole tournament. This means that if one wrestler, say 

Kaylor, has a total score of 9 team points, it means that over the course of the tournament he 

won a net of 9 points (earned points minus points earned by opponents). Negative scores mean 

that that wrestler gave up more team points then he earned during the tournament. The smaller 

the score, the worse the wrestler performed in the tournament and “less exciting” he was to 

watch. 

The data was manually entered from the above-mentioned website. The scores for each match 

are summed up for each wrestler to give their total score for the tournament. Combining these 

two sets will give one dataset of all wrestlers from either team, along with their corresponding 

team and total scored points. 

The following table shows the first few rows of the combined dataset, and the subsequent plot 

is a boxplot of the net points for each wrestler. 

First Few Rows of Combined Data Set 

Wrestler TeamPoints Team 

Allen -8 OregonSt 

Beisley -7 OregonSt 

Bresser -7 OregonSt 

Dematteo -7 OregonSt 

Dixon -4 OregonSt 

Kaylor 9 OregonSt 

https://www.trackwrestling.com/tw/seasons/MainFrame.jsp?TIM=1571150804010&twSessionId=qaxpdwuvak&loadBalanced=true


 

An initial look at the boxplot gives the impression that the two teams did not have too different 

results last year. The median score and ranges are roughly equal for the two teams. It does look 

like the points are approximately normally distributed and that the two teams have 

approximately equal variance. Quantile plots for the two groups will give a better look at the 

assumption of normality. 

 



These quantile plots do not bring up any concerns over the normality assumption. Summary 

statistics on these teams are also reported below, giving a better idea of the center and spread 

of the teampoints for the two teams at ;ast year’s TOC. 

Summary Statistics 

 Min. Mean Max. SD 

OregonSt -11 -4.07 9 5.77 

UtahValley -24 -5.54 18 9.26 

The average team points for the two teams’ wrestlers were −4.07 for OSU and −5.54 for UVU. 

The most team points from any wrestler was 18 (Trussell from UtahValley). The fewest from any 

wrestler was −24 (Steward from UtahValley). The variance of each wrestler’s team points was not 

too different between the two teams. 

Analysis 
An analysis on these data will tell if there is a statistically significant difference between the 

means of these 2 groups. First, the model 𝑦𝑖𝑗 = 𝜇𝑗 + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁(0, 𝜎2) is fit. The estimated 

difference (along with a 95 confidence) of the difference between the two means is determined 

through a 𝑡-test and reported in the table below. 

Estimated Difference of Means 

Estimated Difference Lower Upper 

1.467 -4.6 7.534 

The estimated difference in mean points scored for a wrestler from either team is 1.467 (95 CI: -

4.6 to 7.534). This means that if I were to pick a random wrestler from OSU and from UVU, I 

would expect the OSU wrestler to score, on average, 1.467 more points than the UVU wrestler. 

However, the 95 confidence interval for that estimate includes 0, which means that there is 

insufficient evidence to say that this difference is significantly different from 0. For this year’s 

TOC, there is no clear “better” choice between the two teams for me to watch. 

A barplot shows the means for the 2 groups and their standard errors. This plot is shown below. 



 

The plot for the two means confirms what was already concluded. The two team points do not 

give sufficient evidence to say that there is a significant difference between the true mean points 

earned by wrestlers from UVU and OSU. The 2 means are well within either’s standard error. 

Example of a Linear Model 
This case is an example of 𝐘 = 𝐗𝛃 + 𝛜, with 

𝐘 = 𝐗𝛃 + 𝛜

[

𝑦1

𝑦2

⋮
𝑦𝑛

] = [

1 − 𝑍1 𝑍1

1 − 𝑍2 𝑍2

⋮
1 − 𝑍𝑛 𝑍𝑛

] [
𝜇1

𝜇2
] + [

𝜖1

𝜖2

⋮
𝜖𝑛

] , where 𝑍𝑖 = {
0,  𝑡𝑒𝑎𝑚 = 𝑂𝑟𝑒𝑔𝑜𝑛𝑆𝑡𝑎𝑡𝑒
1,  𝑡𝑒𝑎𝑚 = 𝑈𝑡𝑎ℎ𝑉𝑎𝑙𝑙𝑒𝑦

 

Each observation (wrestler) is either from OSU or UVU, and never from both. Thus each row 

should have one 0 and one 1, which is how the 𝐗 matrix is defined above. Assuming 𝑛 = 𝑛1 + 𝑛2, 

this is a 𝑛 × 2 matrix. The 𝐘 matrix is the observed total tournament points for each wrestler 

from the data, which has 𝑛 = 𝑛1 + 𝑛2 observations. The 𝛜 matrix is an 𝑛 × 1 matrix of normally 

distributed error, centered on 0, with 𝜎2 variance. The 𝛃 here is simply the true mean points 

scored/lost during the TOC for wrestlers from either team, making a 2 × 1 matrix. Each 

observation has its own normally-distributed error term added on, like in most linear models. 

One-Factor Experiment 

An analysis of variance (ANOVA) can be used to analyze a one-factor experiment. These 

experiments have one dependent variable of interest, with predetermined levels for this factor. 



The goal is to assess the quantitative effect of being in each predefined “group” of the 

independent variable on the dependent variable. 

Application Description 
I do not like working on my computer for long periods of time without listening to something as 

I work. Most people like listening to music as they work. I like listening to podcasts and other 

forms of media. Some of my favorite podcasts include Radiolab by NPR, Revisionist History by 

Malcolm Gladwell, and Making Sense with Sam Harris. 

I have never liked listening to music while working, and I tend to think that it is more distracting 

than podcasts. I want to test the effects of listening to podcasts or music on my own 

productivity. Quantifying productivity is rather difficult, so I decided to measure how many 

characters per minute (CPM) I could accurately type under different conditions (silence, music, 

and podcasts) instead. For each of the three conditions, I did a 1-minute typing test to see how 

many characters I could type. 

Data Details 
This data comes from an experiment I conducted, the layout of which is as follows: 

Response Variable Accurately typed characters per minute (CPM) from a typing test 

Factor (Levels) Factor: Sound condition (nothing, music, podcast) 

Experimental Unit For each trial, set the sound condition for a few minutes (on headphones), and 

then perform an online, 1-minute typing test while maintaining the conditions. The CPM of the 

test is the result for the observation. 

Replication Each factor level combination had 5 replicates. 

Randomization The order of the tests were randomly assigned. Several website provide typing 

speed tests. I decided to use livechatinc.com, which has a good format. For this experiment, the 

music I used was from Miike Snow (indie pop), an artist that I like. The podcast that I listened to 

was NPR’s Radiolab. On each observation, I allowed myself to listen for 1 minute before taking 

the test to “get into” whatever I was listening to. Each observation of data includes a sound 

condition (Nothing, Music, or Podcast) and a recorded CPM from a test. 

The following is a glimpse at the first few rows of the data and boxplots of the CPM data for the 

different groups. Quantile plots also are provided to show the normality of the data from the 

three groups, as in the previous analysis. 

First Rows of Typing Test Data 

cpm Condition 

243 Music 

https://www.livechatinc.com/typing-speed-test/#/


242 Music 

250 Podcast 

249 Podcast 

241 Nothing 

244 Nothing 

 



 

From the above boxplots and quantile plots, the assumption of normality for these samples 

does not appear to be violated. The music group may have a little bit of a skew, but nothing to 

cause concern, especially with only 5 samples. The other 2 groups are approximately 

symmetrically distributed. The summary statistics of these data by group are included below. 

Summary Statistics 

Condition Mean CPM Std Dev N 

Nothing 243.8 9.78 5 

Music 244.2 12.28 5 

Podcast 238.6 10.38 5 

The mean CPM for listening to nothing, music, and a podcast are 243.8, 244.2, and 238.6 

respectively. The standard deviations are relatively similar to each other. By the looks of the 

summary statistics, the three groups do not have obvious differences in the CPM typed, but an 

ANOVA will give more details. 

Analysis 
The first step for this analysis is fitting the ANOVA model: 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝜖, 𝜖 ∼

𝑁(0, 𝜎2). The output of ANOVA is included in the table below. 

ANOVA Output 



 Df Sum Sq Mean Sq F value Pr(>F) 

condition 2 97.6 48.8000 0.4133 0.6705 

Residuals 12 1416.8 118.0667 NA NA 

As predicted from a look at the summary statistics, the model shows no evidence of any effect 

of any of the listening conditions on how many characters I can type in a minute (p-value: 

0.6705). The following barplot shows just how similar the three groups are, with bands of their 

standard errors. 

 

Although my experiment of typing tests may not fully reflect how listening conditions can affect 

productivity, it is likely a good indicator that the impact is less severe than I originally thought. 

At a minimum, there is no evidence that listening to music or a podcast while typing would slow 

me down or affect my productivity. Also, my bias against listening to music while typing remains 

without evidence. 

Example of a Linear Model 
This model is also linear, but needs some adjustment from the intuitive approach to an ANOVA 

model. A first approach to this model would likely give 



𝐘 = 𝐗𝛃 + 𝛜

[

𝑦1

𝑦2

⋮
𝑦𝑛

] = [

1 𝑍11 𝑍21 𝑍31

1 𝑍12 𝑍22 𝑍32

⋮ ⋮ ⋮ ⋮
1 𝑍1𝑛 𝑍2𝑛 𝑍3𝑛

] [

𝜇
𝛼1

𝛼2

𝛼3

] + [

𝜖1

𝜖2

⋮
𝜖𝑛

] ,

 where 𝑍1𝑖 = {
1,  𝑠𝑜𝑢𝑛𝑑 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑍2𝑖 = {
1,  𝑠𝑜𝑢𝑛𝑑 = 𝑀𝑢𝑠𝑖𝑐
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

and 𝑍3𝑖 = {
1,  𝑠𝑜𝑢𝑛𝑑 = 𝑃𝑜𝑑𝑐𝑎𝑠𝑡
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Unfortunately, this naive model produces linearly dependent columns in the 𝑋 matrix. One 

solution is to remove the second column, which affects the interpretation of 𝛃 but fits the same 

model. The correct linear interpretation of the one-factor analysis is as follows: 

𝐘 = 𝐗𝛃 + 𝛜

[

𝑦1

𝑦2

⋮
𝑦𝑛

] = [

1 𝑍11 𝑍21

1 𝑍12 𝑍22

⋮ ⋮ ⋮
1 𝑍1𝑛 𝑍2𝑛

] [

𝜇 + 𝛼1

𝛼2 − 𝛼1

𝛼3 − 𝛼1

] + [

𝜖1

𝜖2

⋮
𝜖𝑛

] ,

 where 𝑍1𝑖 = {
1,  𝑠𝑜𝑢𝑛𝑑 = 𝑀𝑢𝑠𝑖𝑐
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, and 𝑍2𝑖 = {
1,  𝑠𝑜𝑢𝑛𝑑 = 𝑃𝑜𝑑𝑐𝑎𝑠𝑡
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In this model, the elements of 𝛃 represent the true mean plus the effect of having no sound in 

the first element, the difference between the effects of no sound and having music in the 

second, and the difference between the effects of no sound and having podcast in the third. The 

𝐘 matrix is the recorded CPM from the experiment, which has 𝑛 observations. The 𝛜 matrix is an 

𝑛 × 1 matrix of normally distributed error, centered on 0, with 𝜎2 variance. 

Two-Factor Experiment 

A two-factor experiment brings another variable into the previous type of analysis. On top of 

another effect to review, these experiments also allow for a look at the potential interaction 

effect between the two variables. An interaction means that the effect of one of the factors 

changes based on the level of the other factor. 

Application Description 
A few years ago in Stat 230, I tested the effects of the type of “mug”, type of liquid, and any 

interaction between the two on how hot a microwave can get hot chocolate after 90 seconds in 

the microwave. With Todd Okeson and Eric McGill’s permission, this data is included as an 

example of a two-factor experiment. In this experiment, hot chocolate powder was mixed into 

one of three different liquids, and into different types of cups. These hot chocolate mixtures 

were heated in microwaves for 90 seconds. Thermometers measured the temperatures 

immediately following the 90 seconds. 

Data Details 



This data comes from an experiment I conducted with my group, the layout of which is as 

follows: 

Response Variable Temperature of hot chocolate (degrees Farenheit) 

Factor (Levels) Factor 1: Cup (plastic cup, ceramic mug) Factor 2: Liquid (water, 2% milk, almond 

milk) 

Experimental Unit For each liquid-cup combination, mix the hot chocolate for 15 seconds before 

microwaving for 90 seconds. The liquid is then measured with a thermometer (not touching the 

sides of the cup) for 20 seconds. 

Replication Each factor level combination had 6 replicates. 

Randomization We took several precautions to avoid potential lurking variables. For example, we 

collected several mugs of the different types from varying locations, and then randomly 

selectewd out of those a sample to experiment on. We also bought our milks and got our waters 

from different sources. We stored the liquids in the same type of jugs overnight in the same 

fridge so that they would all start at similar temperatures. The trials were randomized and we 

used room-temperature water baths for the hot chocolate whisks in between trials. Other 

measures were also taken to minimize latent effects. 

A boxplot of the results of this experiment are included below. 

 

The two outliers from this experiment are trials 19 and 2. They are both from trials with plastic 

cups, so they will not be excluded from this analysis, in case they represent an important trend. 

Summary statistics of these data are included below. 



Summary Statistics of Hot Chocolate Data 

Liquid Cup Mean Temp Min Temp Max Temp Std Dev of Temp 

Water PlasticCup 124.8167 118.2 130.3 3.9867 

2pMilk PlasticCup 118.4500 114.3 132.8 7.1023 

AlmondMilk PlasticCup 112.9167 104.0 129.7 9.5690 

Water CeramicMug 119.4667 115.7 122.2 2.8232 

2pMilk CeramicMug 115.6500 108.0 120.5 5.2558 

AlmondMilk CeramicMug 112.7667 103.2 119.8 5.4416 

getName <- function(cup, liquid) { 

  cupL <- substr(cup,1,1) 

  liquidL <- substr(liquid,1,1) 

  cup.out <- ifelse(cupL=="P", "plastic cup", "ceramic mug") 

  liquid.out <- ifelse(liquidL=="W","water", ifelse(liquidL=="2", "2% milk", "almond milk")) 

  c("c"=cup.out,"l"=liquid.out) 

} 

From the two factors, 6 factor level combinations are possible. The overall minimum 

temperature was 103.2 (from almond milk in a ceramic mug). The overall maximum temperature 

was 132.8 (from 2% milk in a plastic cup). The different groups have relatively similar variance of 

temperatures and the means for the different groups range between 112.77 and 124.82. 

An interaction plot displays the potential for an interaction effect. This type of plot shows the 

means of all of the different factor-level combinations. If lines cross, this is typically a strong 

indication of an interaction effect. The interaction plot from this experiment is shown below. 



 

Although the lines of these effects are not parallel, the lines do not cross. This most likely means 

that evidence for an interaction effect is inconclusive. 

Analysis 
To get a further look at main and interaction effects, first the ANOVA model is fit: 𝑦𝑖𝑗𝑘 = 𝜇 +

𝛽1𝑖 ∗ 𝐿𝑖𝑞𝑢𝑖𝑑 + 𝛽2𝑗 ∗ 𝐶𝑢𝑝 + 𝛽3𝑖𝑗 ∗ 𝐿𝑖𝑞𝑢𝑖𝑑 ∗ 𝐶𝑢𝑝 + 𝜖𝑘, 𝜖 ∼ 𝑁(0, 𝜎2). Output from this model is 

included in the folowing table. 

ANOVA Output 

 Df Sum Sq Mean Sq F value Pr(>F) 

Liquid 2 520.5006 260.2503 6.9989 0.0032 

Cup 1 68.8900 68.8900 1.8527 0.1836 

Liquid:Cup 2 40.5650 20.2825 0.5455 0.5852 

Residuals 30 1115.5333 37.1844 NA NA 

The effect of liquid on temperature appears to be significant (p-value: 0.0032). There is no 

evidence for a significant effect of cup type on temperature (p-value: 0.1836) and no evidence of 

an interaction effect between liquid and cup type on temperature (p-value: 0.5852). Because 

there is no evidence of an effect, we will exclude the interaction term from the model to fit the 

new model: 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽1𝑖 ∗ 𝐿𝑖𝑞𝑢𝑖𝑑 + 𝛽2𝑗 ∗ 𝐶𝑢𝑝 + 𝜖𝑘, 𝜖 ∼ 𝑁(0, 𝜎2). 

ANOVA Output on Simplified Model 



 Df Sum Sq Mean Sq F value Pr(>F) 

Liquid 2 520.5006 260.2503 7.2035 0.0026 

Cup 1 68.8900 68.8900 1.9068 0.1769 

Residuals 32 1156.0983 36.1281 NA NA 

This new model yields the same conclusions of strong evidence of an effect of liquid on 

temperature (p-value: 0.0026) and no significant evidence of cup type on temperature (p-value: 

0.1769). A Tukey pairwise comparison test looks at which levels of the liquid factor are 

significantly different. A table of these pairwise comparisons is shown below. 

Tukey Pairwise Comparisons 

 diff lwr upr p adj 

2pMilk-Water -5.09167 -11.12167 0.93834 0.11115 

AlmondMilk-Water -9.30000 -15.33000 -3.27000 0.00177 

AlmondMilk-2pMilk -4.20833 -10.23834 1.82167 0.21523 

From the table, the only pair that have evidence of a significant difference is almond milk 

against water. The temperature of hot chocolate made with water is an estimated 9.3 degrees 

hotter than hot chocolate made with almond milk (p-value: 0.0018). Although not statistically 

significant, the temperature of hot chocolate made with water is an estimated 5.1 degrees hotter 

than hot chocolate made with 2% milk (p-value: 0.1112). 

Example of a Linear Model 
This case is an example of 𝐘 = 𝐗𝛃 + 𝛜, with 

𝐘 = 𝐗𝛃 + 𝛜

[

𝑦1

𝑦2

⋮
𝑦𝑛

] = [

1 𝑍11 𝑍21 𝑍31 𝑍11 ∗ 𝑍31 𝑍21 ∗ 𝑍31

1 𝑍12 𝑍22 𝑍32 𝑍12 ∗ 𝑍32 𝑍22 ∗ 𝑍32

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑍1𝑛 𝑍2𝑛 𝑍3𝑛 𝑍1𝑛 ∗ 𝑍3𝑛 𝑍2𝑛 ∗ 𝑍3𝑛

]

[
 
 
 
 
 
𝛽0

𝛽1

𝛽2

𝛽3

𝛽4

𝛽5]
 
 
 
 
 

+ [

𝜖1

𝜖2

⋮
𝜖𝑛

] ,

 where 𝑍1𝑖 = {
1,  𝑙𝑖𝑞𝑢𝑖𝑑 = 2%𝑀𝑖𝑙𝑘
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑍2𝑖 = {
1,  𝑙𝑖𝑞𝑢𝑖𝑑 = 𝐴𝑙𝑚𝑜𝑛𝑑𝑀𝑖𝑙𝑘
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

and 𝑍3𝑖 = {
1,  𝐶𝑢𝑝 = 𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑀𝑢𝑔
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The linear model for two-factor experiments are like those of one-factor experiments, with a few 

additional columns in the 𝐗 matrix and a few additional coefficients in the 𝛃 matrix. First of all, 

columns are added for the second factor (one column for every level after the first). Interaction 

columns are added, as products of the columns that correspond to each factor-level 

combination. In the 𝛃 matrix, the elements are as follows: 



• 𝛽0 is the true mean temperature plus the effect of water in a plastic cup (and it’s 

interaction) 

• 𝛽1 is the difference between the effect of water and the effect of 2% Milk (and the 

interaction with water) 

• 𝛽2 is the difference between the effect of water and the effect of almond milk (and the 

interaction with water) 

• 𝛽3 is the difference between the effect of a plastic cup and the effect of a ceramic mug (and 

the interaction with water) 

• 𝛽4 is the difference between the interaction effect of water and a plastic cup and the 

interaction effect of 2% milk and a ceramic mug 

• 𝛽5 is the difference between the interaction effect of water and a plastic cup and the 

interaction effect of almond milk and a ceramic mug 

Thus for any row of the 𝑋 matrix, the effect of a single level of liquid, of a single level of cup, and 

the interaction are included. The 𝐘 matrix is the recorded temperature of each hot chocolate 

from the experiment, which has 𝑛 observations. The 𝛜 matrix is an 𝑛 × 1 matrix of normally 

distributed error, centered on 0, with 𝜎2 variance. 

One-Factor Analysis of Covariance 

A one-factor analysis of covariance is simply a one-factor ANOVA, after accounting for a second, 

continuous variable. 

Application Description 
Many interesting characteristics could possibly affect the education of young students. Many 

think that stay-at-home moms make for the best environment for kids. The theory is that moms 

who are at home (not working) have more time to teach and nurture kids, who will then do 

better in school. I would love to explore this theory. 

Another interesting characteristic to look at is the effect of absences on student performance. 

An intuitive guess is that students who don’t come to class have their grades negatively 

impacted, but the actual effect needs to be explored. An interaction between number of 

absences and the students’ mother’s occupation will also be addressed. 

Data Details 
This data was originally collected by Dr. Paulo Cortez, but was obtained in 2019 from UC Irvine’s 

Machine Learning Repository. This particular data set was released in 2014. It includes roughly 

30 attributes about a group of about 650 Portuguese middle-school students. Out of these 

attributes, 2 will be analyzed (the two variables Mjob and absences). Datasets on results for 

Math and Portuguese classes are given, but this analysis focuses only on the grades for math. 

http://www3.dsi.uminho.pt/pcortez/Home.html
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/datasets/Student+Performance


The student’s grades are reported per semester as G1, G2, or G3. These grades are scored on a 

0-20 scale. 

We want only the columns of interest: Mother’s job, number of absences, and trimester grades. 

We want the average grade across the 3 trimesters instead of 3 separate outcomes across the 

different trimesters. The mother’s job will be releveled to compare each level to at-home 

mothers. For simplicity, the data is subset to only rows with 3 of the possible options of 

mother’s jobs: at-home mothers, mothers working in health, and teaching mothers. 

A glimpse at a few rows of these updated data are shown in the folowing table. 

First Few Rows of Subset Student Data 

 Mjob absences avg.grades 

1 at-home 6 5.6667 

2 at-home 4 5.3333 

3 at-home 10 8.3333 

4 health 2 14.6667 

13 health 2 14.0000 

14 teacher 2 10.3333 

The next step is to look at the summary statistics of grades, split by mother’s work. These 

statistics are summarized in the following table. 

Summary Statistics of Grades 

Mother’s Job Mean SD Min Max n 

at-home 10.37209 2.914305 5.000000 18.33333 43 

health 12.20000 2.896358 8.000000 19.33333 25 

teacher 11.75194 3.278189 5.666667 18.66667 43 

The 3 group means are similar (around 10-12) and the standard deviations are also comparable 

(around 3). Maximum possible grade. The overall minimum average grade is 5 and the overall 

maximum grade is 19.33. 

The following scatterplot summarizes all of the grades, by number of absences and shows the 

need for transformations, due to non-linearity. 



 

This scatterplot shows that a log transformation of both absences and average grades is 

required. The data should look like a linear scatterplot, but instead looks like it has a 

multiplicative effect. The following is the same plot on log scale, labeled by mother’s job. 

Because log(0) = −∞, the students with 0 absences are excluded from this analysis. 

 

This plot looks much more linear, which is an assumption of an analysis of covariance of this 

type. There is no clear trend between the three types of mothers’ working situations. The 

following plot shows the R studentized residuals of a model on these data, as compared to a 



standard normal distribution. If the two densities are roughly equal, than this model’s assumtion 

of normality is filled. 

 

Because the two lines are roughly equal, the above plot shows that the assumption of normality 

has no red flags. 

Analysis 
As always, the first step of the analysis after inspecting the data is to fit the model. We will fit the 

model: log(𝑔𝑟𝑎𝑑𝑒) = 𝛽0 + 𝛽1 ∗ ℎ𝑒𝑎𝑙𝑡ℎ + 𝛽2 ∗ 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 + 𝛽3 ∗ log(𝑎𝑏𝑠𝑒𝑛𝑐𝑒𝑠) + 𝛽4 ∗ ℎ𝑒𝑎𝑙𝑡ℎ ∗

log(𝑎𝑏𝑠𝑒𝑛𝑐𝑒𝑠) + 𝛽5 ∗ ℎ𝑒𝑎𝑙𝑡ℎ ∗ log(𝑎𝑏𝑠𝑒𝑛𝑐𝑒𝑠) + 𝜖𝑖𝑗. The following table reports the resulting 

model output. 

Model Summary 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.3693 0.0891 26.5863 0.0000 

log(absences) -0.0461 0.0517 -0.8913 0.3748 

Mjobhealth 0.2222 0.1546 1.4371 0.1537 

Mjobteacher 0.2326 0.1363 1.7069 0.0908 

log(absences):Mjobhealth -0.0302 0.0902 -0.3354 0.7380 

log(absences):Mjobteacher -0.0548 0.0747 -0.7330 0.4652 



There is no evidence of any interaction effect between the mother’s job and absences on 

students’ grades (𝑝-values of 0.738 and 0.4652 for jobs in health or teaching, respectively), so 

those terms will be excluded from the model. We will now fit the model log(𝑔𝑟𝑎𝑑𝑒) = 𝛽0 + 𝛽1 ∗

ℎ𝑒𝑎𝑙𝑡ℎ + 𝛽2 ∗ 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 + 𝛽3 ∗ log(𝑎𝑏𝑠𝑒𝑛𝑐𝑒𝑠) + 𝜖𝑖𝑗 excluding the interaction terms. The output 

from this model is shown in the following table. 

Model Summary 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.4104 0.0653 36.9205 0.0000 

log(absences) -0.0731 0.0331 -2.2092 0.0293 

Mjobhealth 0.1761 0.0685 2.5711 0.0115 

Mjobteacher 0.1430 0.0592 2.4157 0.0174 

For every 1% increase in absences, a student’s grades will decrease by an estimated 7.3% (p-

value: 0.0293). The grades of a student whose mother works in health (as opposed to a stay-at-

home mom) has an estimated increase of 17.6% (p-value: 0.0115). The grades of a student 

whose mother works as a teacher (as opposed to a stay-at-home mom) has an estimated 

increase of 14.3% (p-value: 0.0174). 

The following plot shows the effects of absences and mothers’ job on students’ grades. 

 

A look at the three distinct lines of the effect plot shown makes it seem that students with moms 

working in health or working as teachers have significantly better grades, but not too different 



from eah other. Because there is no significant evidence of any interaction effect between 

mother’s job and number of absences on grades, the slopes of the three lines are the same. The 

slope of the three lines representes the incremental effect of more absences on grades. The 

shifts between the lines represents the relative effects of students having a mom in one of the 

three working situations. 

A reduced model is fit, and compared to the full model in an ANOVA. This type of fit shows if 

the extra terms included in the full model are statistically significant. The following table reports 

the model output. 

Results of ANOVA Testing Effect of Mother’s Work 

Res.Df RSS Df Sum of Sq F Pr(>F) 

109 8.5825 NA NA NA NA 

107 7.9345 2 0.6479 4.3688 0.015 

The ANOVA comparing a model with just absences to one with absences and mother’s job 

reveals that the additive effect of a students’ mother’s job has a significant effect on grades (p-

value: 0.015). This analysis gives compelling evidence that students with at-home mothers do 

not necessarily get better grades (at least in math) than those with moms working in health or 

as teachers. A lot could be done to perform a more rigorous analysis, and an experiment would 

be necessary to describe any causal relationships. 

Example of a Linear Model 
This case is an example of 𝐘 = 𝐗𝛃 + 𝛜, with 

𝐘 = 𝐗𝛃 + 𝛜

[

ln𝑦1

ln𝑦2

⋮
ln𝑦𝑛

] = [

1 ln𝑋1 𝑍11 𝑍21 ln𝑋1 ∗ 𝑍11 ln𝑋1 ∗ 𝑍21

1 ln𝑋2 𝑍12 𝑍22 ln𝑋2 ∗ 𝑍12 ln𝑋2 ∗ 𝑍22

⋮ ⋮ ⋮ ⋮ ⋮
1 ln𝑋𝑛 𝑍1𝑛 𝑍2𝑛 ln𝑋𝑛 ∗ 𝑍1𝑛 ln𝑋𝑛 ∗ 𝑍2𝑛

]

[
 
 
 
 
 
𝛽0

𝛽1

𝛽2

𝛽3

𝛽4

𝛽5]
 
 
 
 
 

+ [

𝜖1

𝜖2

⋮
𝜖𝑛

] , 

where 𝑍1𝑖 = {
1,  ℎ𝑒𝑎𝑙𝑡ℎ
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝑍2𝑖 = {
1,  𝑡𝑒𝑎𝑐ℎ𝑒𝑟
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This example of a linear model includes log transformations of both the repsonse variable 

(average grades) and the continuous explanatory variable (absences). The 𝐗 matrix in this case is 

extremely similar to that of the two-factor experiment. One difference is that this 𝐗 matrix has 

columns with continuous values for one of the explanatory variables instead of all indicator 

functions. The 𝐘 matrix is the recorded average grades of each of the 𝑛 students. The 𝛜 matrix is 

an 𝑛 × 1 matrix of normally distributed error, centered on 0, with 𝜎2 variance. The 𝛃 is also 

similar. 



Conclusion 

Linear models are extremely useful for analysing and interpreting real data. Experimental 

designs are the most useful to infer causal relationships, but inferences can be drawen even 

from observational data using linear models. The examples included in this application portfolio 

are just a few simple examples, but many more exist. Many times, a model may not initially 

appear to fit the assumption of a linear model (like non-normality or an apparent multiplicative 

effect), but may be transformed in such a way that a linear model is still an effective tool. 


